

Corrigendum

Corrigendum to ' α_1 -Adrenoceptors mediating contraction in arteries of normotensive and spontaneously hypertensive rats are of the α_{1D} and α_{1A} subtypes'

[Eur. J. Pharmacol. 298 (1996) 257–263] ¹

Rafael Villalobos-Molina *, Maximiliano Ibarra

Sección de Terapéutica Experimental, Departamento de Farmacología y Toxicología, CINVESTAV-IPN, Apartado Postal 22026, México D.F. 14000 Mexico

Received 7 August 1995; revised 6 November 1995; accepted 14 November 1995

Abstract

 α_1 -Adrenoceptor subtypes mediating contraction in carotid, aorta, mesenteric and caudal arteries from both Wistar Kyoto (WKY) normotensive and spontaneously hypertensive (SHR) rats were investigated by using the α_{1A} -adrenoceptor agonist methoxamine and antagonized with selective, competitive antagonists WB-4101, 5-methyl urapidil or BMY 7378 (8-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-8-azaspiro(4,5)decane-7,9-dione dihydrochloride). Isometric tension changes were recorded after methoxamine addition to the arterial rings, and the effects of the antagonists determined. All the antagonists shifted to the right the concentration-response curve to methoxamine. pA $_2$ values indicate that all arteries but caudal express the α_{1D} -adrenoceptor subtype, since BMY 7378 values were high in these arteries. Due to the high pA $_2$ values for 5-methyl urapidil and WB-4101 and the low values for BMY 7378 we conclude that the tail artery expresses the α_{1A} and not the α_{1B} subtype. No differences were found between both strains of rats, suggesting that hypertension does not modify the α_1 -adrenoceptors in conductance arteries.

Keywords: α_{1D} -Adrenoceptor; α_{1A} -Adrenoceptor; BMY 7378; Spontaneously hypertensive rat (SHR); Artery; Wistar Kyoto rat (WKY)

In the above-mentioned paper, the captions to Figs. 3 and 4 were inadvertently exchanged: the graphs in Fig. 3 correspond to the mesenteric arteries; the graphs in Fig. 4 correspond to the carotid arteries.

The Authors

^{*} Corresponding author. Tel.: (525) 675-6284; fax: (525) 675-9168.

SSDI of original article: 0014-2999(95)00781-4.